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Time independent Schrodinger equation

The time independent Schrodinger equation
—h?
— V) + Vi = E (1)
2m

In 1-d this reduces to

I () _
S 4 V(@) = Bvla) @)

The solution in the case of the infinite potential well,

)0, —L/2<wx<L/2
Viw) = {oo, L/2 < |z| )

leads to discrete energy eigenvalues,

where n =1,2,3, ...

The operator on the left in (1) is the usual Hamiltonian

—R? ,
= — V 5
ZmV * (5)
so we have

Hy = Ev, (6)

an eigenvalue equation, with ¢ as the eigenstates.
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Time dependent equation and probability density

The time dependent Schrodinger equation is

L O0Y(r,t)
ih By = Hi(r,t) (7)

where the V(r,t) in H can be time dependent (and hence, H is time depen-
dent). The notation of the bold symbol 7 is to denote the vector nature of
the position 7. In general, the wave function

Y € Z, (8)

i.e., the set of complex numbers.

How is 1 interpreted?
p(r,t) = [Y|* = 4"y (9)
is the probability density function (pdf) provided

/d?’r p(r,t) =1 (10)

Here ¢* is the complex conjugate (c.c.) of ¢. If ¥ is not normalizable this
way, we have relative probabilities.

The continuity equation is

dp
ot

where j is defined as the probability current density. To derive this, we use
(7) and multiply it with the c.c., ¥*,

9y(r,t)
ot

4V =0 (11)

th

X P(r,t) = (Hy) x ¢

2 (12)

_ i 2 * 2
= SR+ Vi o)l

Next, assume V to be real, and take the c.c. of the above equation, obtaining,

oY* —h?
D e = g s ve e 09
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Subtracting the above two equations we obtain,

o(r,t) L OY*(r,t h? .
Dy gy 4 in 2Dy = I e —urve) )
This leads to,
LoWy*) o op I o
I =i = SV (Y~ §TY) (15)
With ,
J =5 (VY - pV) (16)

as the current density, we have the continuity equation (11).

If the normalization integral (10) holds, then it should hold for all time
t, i.e.,

%/d?’r p(r,t) =0 (17)
Using the continuity equation we have,
/d3r apg;t):—/d?’rv-j:O, (18)

using the divergence theorem.

Expectation values and Fourier transforms

The expectation value of position is
r) = [ e o (19)
and also for any function of position, i.e.,
() = [ o g o 20

But how are operator expectation values calculated in quantum mechanics—
for example, (p) and (H)?



Since —ihV (equivalently the x-component is, —ihd, ) is associated with mo-
mentum p; and ¢hd; is associated with H, we have

(p) = / & g (—ihV) (21a)
(H) = / d3r¢*(m%¢) (21b)

So the operators are inserted in between ¢* and 1.
Consistency of (21b) with the time dependent Schrédinger equation (7) can
be seen by multiplying ¢* on the left, i.e.,

W*(r.1) X mawg’;’ D _ ot r ) H (1) (22)

and integrating over all space. A formal derivation of (21a) this is obtained
using the Fourier transform (FT) pair

0(r1) = s [ Eromes (-r) (232)

o(p,t) = m /dgr (r,t)exp (—%p : r) (23b)

If [1]? is the pdf in position coordinates, |¢|? has the analogous interpretation
in momentum coordinates. Therefore, the momentum expectation value is

(p) Z/d?’zf)p\fbl2 =/d3pp¢*¢

1 1 (24)
_ 3 3 *
—/d Ppm/d ry*(r,t)exp (+ﬁp-’r) o(p,t)
where ¢* has been replaced using c.c. of (23b). Using the trick,
i h i
P exp (ﬁp . 'r> = ZV exp <ﬁp . r) , (25)
we write the above as
1 3 3 h 7
W/d p/d ry (r,t);Vexp (ﬁp-r) o(p,t)
— [@rw e}V [ @poee (1p-r (26)
"0 (2mh)3/? h

_ /d%w(r,t)?w(r,t) = (p),
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where the momentum integration is FT (23a). More generally,

) = [ @ (2v) v (27)

Similarly the position expectation (20) can be calculated in momentum space
as,

(f(r) = / & (p, ) F(iIV,)8(p, 1) (28)

emphasizing the dual relationship shared between the operators r» and p in
quantum mechanics, summarized as,

position space) r <> ihV, (momentum space
( ) p

.. h (29)
(position space) —V <+ p (momentum space)
i

What is the time dependent Schrédinger equation (7)

—h?
G = HU ) = S0 Vi 00

in momentum space? Using the FT (23b) and the above, we have,

. 8¢(pat) _ ih 3 a¢(r>t) _1. .
ih ot _(27rh)3/2/dr ot eXp( nP T>

= m/d?’r Hy(r,t)exp (—%p . r)
_ m /d% (;—:jv2¢(r,t) + V(r,tm(r,t)) exp (—%p - r)
(30)

To evaluate the RHS, we use back and forth FT’s and integration by parts.
So here goes—first, the [ Viexp (—%p . r) piece:
1 P 1
s | Crdaves@nen (<se-a-r) G

where 1) has been replaced by its FT ¢ (23a). Next using (23b), the [ d®ris
evaluated to yield,

(gﬂli)?,/z /dgq V(p —q,t)9(q.1) (32)
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This is known as a convolution integral.

The other piece, [VZ)exp (—1p-r), on the RHS is evaluated using re-
peated integration by parts,

! /dgr _—hQ (VQI/}(T, t)) exp (—%p . r)

(27Th)3/2 2m
= m U d’r %V- (V) exp(—¢p- 7)) - %/d% (p- V) exp(—ip-7)

1 3 _h2 . . i
ih 5 i
Fou | rem Venl-ip r)}
(33)
In the last line above, the first two terms are a result of integration by parts

and the use of (25) to evaluate Vexp (—%p . 'r). These two terms vanish;
and the remaining third term in the last line above becomes,

p2

1 1 '
(27?71)3/2 X % /d37’¢p : peXp(—%p . 'r) = %(p(p’ t) (34)

where once again FT (23b) is used.

Putting the convolution term (32) and the above together, (30) becomes

a 2
2P P 1) ﬁ [®avie—anoan @9

So the time dependent Schrodinger differential equation in position space, is
an integro-differential equation in momentum space.

End of Podcast Episode 1.



