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Time independent Schrödinger equation

The time independent Schrödinger equation

−~2

2m
∇2ψ + V ψ = Eψ (1)

In 1-d this reduces to

−~2

2m

d2ψ(x)

dx2
+ V (x)ψ(x) = Eψ(x) (2)

The solution in the case of the infinite potential well,

V (x) =

{
0, −L/2 < x < L/2

∞, L/2 < |x|
(3)

leads to discrete energy eigenvalues,

E = n2 π
2~2

8mL2
(4)

where n = 1, 2, 3, . . .

The operator on the left in (1) is the usual Hamiltonian

H ≡ −~
2

2m
∇2 + V (5)

so we have
Hψ = Eψ, (6)

an eigenvalue equation, with ψ as the eigenstates.
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Time dependent equation and probability density

The time dependent Schrödinger equation is

i~
∂ψ(r, t)

∂t
= Hψ(r, t) (7)

where the V (r, t) in H can be time dependent (and hence, H is time depen-
dent). The notation of the bold symbol r is to denote the vector nature of
the position r. In general, the wave function

ψ ∈ Z, (8)

i.e., the set of complex numbers.

How is ψ interpreted?
ρ(r, t) = |ψ|2 = ψ∗ψ (9)

is the probability density function (pdf) provided∫
d3r ρ(r, t) = 1 (10)

Here ψ∗ is the complex conjugate (c.c.) of ψ. If ψ is not normalizable this
way, we have relative probabilities.

The continuity equation is

∂ρ

∂t
+∇ · j = 0 (11)

where j is defined as the probability current density. To derive this, we use
(7) and multiply it with the c.c., ψ∗,

i~
∂ψ(r, t)

∂t
× ψ∗(r, t) = (Hψ)× ψ∗

=
−~2

2m
(∇2ψ)ψ∗ + V (r, t)|ψ|2

(12)

Next, assume V to be real, and take the c.c. of the above equation, obtaining,

−i~∂ψ
∗(r, t)

∂t
× ψ(r, t) =

−~2

2m
(∇2ψ∗)ψ + V (r, t)|ψ|2 (13)
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Subtracting the above two equations we obtain,

i~
∂ψ(r, t)

∂t
ψ∗(r, t) + i~

∂ψ∗(r, t)

∂t
ψ(r, t) =

~2

2m

(
ψ∇2ψ∗ − ψ∗∇2ψ

)
(14)

This leads to,

i~
∂(ψψ∗)

∂t
= i~

∂ρ

∂t
=

~2

2m
∇ · (ψ∇ψ∗ − ψ∗∇ψ) (15)

With

j ≡ ~
2mi

(ψ∗∇ψ − ψ∇ψ∗) (16)

as the current density, we have the continuity equation (11).

If the normalization integral (10) holds, then it should hold for all time
t, i.e.,

∂

∂t

∫
d3r ρ(r, t) = 0 (17)

Using the continuity equation we have,∫
d3r

∂ρ(r, t)

∂t
= −

∫
d3r∇ · j = 0, (18)

using the divergence theorem.

Expectation values and Fourier transforms

The expectation value of position is

〈r〉 =

∫
d3r r |ψ|2 (19)

and also for any function of position, i.e.,

〈f(r)〉 =

∫
d3r f(r) |ψ|2 (20)

But how are operator expectation values calculated in quantum mechanics—
for example, 〈p〉 and 〈H〉?
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Since −i~∇ (equivalently the x-component is, −i~∂x) is associated with mo-
mentum p; and i~∂t is associated with H, we have

〈p〉 =

∫
d3r ψ∗(−i~∇ψ) (21a)

〈H〉 =

∫
d3r ψ∗(i~

∂

∂t
ψ) (21b)

So the operators are inserted in between ψ∗ and ψ.
Consistency of (21b) with the time dependent Schrödinger equation (7) can
be seen by multiplying ψ∗ on the left, i.e.,

ψ∗(r, t)× i~∂ψ(r, t)

∂t
= ψ∗(r, t)Hψ(r, t) (22)

and integrating over all space. A formal derivation of (21a) this is obtained
using the Fourier transform (FT) pair

ψ(r, t) =
1

(2π~)3/2

∫
d3p φ(p, t) exp

(
i

~
p · r

)
(23a)

φ(p, t) =
1

(2π~)3/2

∫
d3r ψ(r, t) exp

(
− i
~
p · r

)
(23b)

If |ψ|2 is the pdf in position coordinates, |φ|2 has the analogous interpretation
in momentum coordinates. Therefore, the momentum expectation value is

〈p〉 =

∫
d3pp |φ|2 =

∫
d3ppφ∗φ

=

∫
d3pp

1

(2π~)3/2

∫
d3r ψ∗(r, t) exp

(
+
i

~
p · r

)
φ(p, t)

(24)

where φ∗ has been replaced using c.c. of (23b). Using the trick,

p exp

(
i

~
p · r

)
=

~
i
∇ exp

(
i

~
p · r

)
, (25)

we write the above as

1

(2π~)3/2

∫
d3p

∫
d3r ψ∗(r, t)

~
i
∇ exp

(
i

~
p · r

)
φ(p, t)

=

∫
d3r ψ∗(r, t)

~
i
∇ 1

(2π~)3/2

∫
d3p φ exp

(
i

~
p · r

)
=

∫
d3r ψ∗(r, t)

~
i
∇ψ(r, t) = 〈p〉,

(26)
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where the momentum integration is FT (23a). More generally,

〈f(p)〉 =

∫
d3r ψ∗(r, t) f

(
~
i
∇
)
ψ(r, t) (27)

Similarly the position expectation (20) can be calculated in momentum space
as,

〈f(r)〉 =

∫
d3p φ∗(p, t)f(i~∇p)φ(p, t) (28)

emphasizing the dual relationship shared between the operators r and p in
quantum mechanics, summarized as,

(position space) r ↔ i~∇p (momentum space)

(position space)
~
i
∇ ↔ p (momentum space)

(29)

What is the time dependent Schrödinger equation (7)

i~
∂ψ(r, t)

∂t
= Hψ(r, t) =

−~2

2m
∇2ψ(r, t) + V (r, t)ψ(r, t)

in momentum space? Using the FT (23b) and the above, we have,

i~
∂φ(p, t)

∂t
=

i~
(2π~)3/2

∫
d3r

∂ψ(r, t)

∂t
exp

(
− i
~
p · r

)
=

1

(2π~)3/2

∫
d3r Hψ(r, t) exp

(
− i
~
p · r

)
=

1

(2π~)3/2

∫
d3r

(
−~2

2m
∇2ψ(r, t) + V (r, t)ψ(r, t)

)
exp

(
− i
~
p · r

)
(30)

To evaluate the RHS, we use back and forth FT’s and integration by parts.
So here goes—first, the

∫
V ψ exp

(
− i

~p · r
)

piece:

1

(2π~)3

∫
d3r d3q V (r, t)φ(q, t) exp

(
− i
~

(p− q) · r
)

(31)

where ψ has been replaced by its FT φ (23a). Next using (23b), the
∫

d3r is
evaluated to yield,

1

(2π~)3/2

∫
d3q V (p − q, t)φ(q, t) (32)
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This is known as a convolution integral.

The other piece,
∫
∇2ψ exp

(
− i

~p · r
)
, on the RHS is evaluated using re-

peated integration by parts,

1

(2π~)3/2

∫
d3r
−~2

2m

(
∇2ψ(r, t)

)
exp

(
− i

~p · r
)

=
1

(2π~)3/2

[∫
d3r
−~2

2m
∇ ·
(
(∇ψ) exp(− i

~p · r)
)
− i~

2m

∫
d3r (p · ∇ψ) exp(− i

~p · r)

]
=

1

(2π~)3/2

[∫
d3r
−~2

2m
∇ ·
(
∇ψ exp(− i

~p · r)
)
− i~

2m

∫
d3r p · ∇(ψ exp(− i

~p · r))

+
i~
2m

∫
d3r ψp · ∇ exp(− i

~p · r)

]
(33)

In the last line above, the first two terms are a result of integration by parts
and the use of (25) to evaluate ∇ exp

(
− i

~p · r
)
. These two terms vanish;

and the remaining third term in the last line above becomes,

1

(2π~)3/2
× 1

2m

∫
d3r ψ p · p exp(− i

~p · r) =
p2

2m
φ(p, t) (34)

where once again FT (23b) is used.

Putting the convolution term (32) and the above together, (30) becomes

i~
∂φ(p, t)

∂t
=

p2

2m
φ(p, t) +

1

(2π~)3/2

∫
d3q V (p − q, t)φ(q, t) (35)

So the time dependent Schrödinger differential equation in position space, is
an integro-differential equation in momentum space.

End of Podcast Episode 1.
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