Equations and Derivations for Episode 2

Let's Talk QM Podcast

by

Dr. Dhokarh

Equations from the previous episode

$$i\hbar \frac{\partial \psi(\mathbf{r},t)}{\partial t} = H\psi(\mathbf{r},t)$$
 (1)

with

$$H = -\frac{\hbar^2}{2m} \nabla^2 + V(\mathbf{r}, t) \tag{2}$$

The continuity equation is

$$\frac{\partial \rho}{\partial t} + \nabla \cdot \boldsymbol{j} = 0 \tag{3}$$

where $\rho = |\psi|^2$, with

$$\mathbf{j}(\mathbf{r},t) = \frac{\hbar}{2mi} \left(\psi^* \nabla \psi - \psi \nabla \psi^* \right) \tag{4}$$

We, therefore, have,

$$j_{x} = \frac{\hbar}{2mi} \left(\psi^{*} \frac{\partial \psi}{\partial x} - \psi \frac{\partial \psi^{*}}{\partial x} \right)$$

$$j_{y} = \frac{\hbar}{2mi} \left(\psi^{*} \frac{\partial \psi}{\partial y} - \psi \frac{\partial \psi^{*}}{\partial y} \right), \text{ etc.}$$
(5)

Ehrenfest's theorem

$$\langle \mathbf{r} \rangle = \int d^3 r \, \psi^* \mathbf{r} \, \psi \tag{6}$$

$$\frac{\mathrm{d}\langle \boldsymbol{r}\rangle}{\mathrm{d}t} = \frac{\mathrm{d}}{\mathrm{d}t} \int \mathrm{d}^3 r \, \psi^* \boldsymbol{r} \psi \tag{7}$$

Recall that $\mathbf{r} = x\hat{x} + y\hat{y} + z\hat{z}$, so we can look at,

$$\frac{\mathrm{d}\langle x\rangle}{\mathrm{d}t} = \int \mathrm{d}^3 r \, \frac{\partial \psi^*}{\partial t} x \psi + \int \mathrm{d}^3 r \, \psi^* x \frac{\partial \psi}{\partial t}
= -\frac{1}{i\hbar} \int \mathrm{d}^3 r \, (H\psi^*) x \psi + \frac{1}{i\hbar} \int \mathrm{d}^3 r \, \psi^* x H \psi
= \frac{\hbar}{2mi} \int \mathrm{d}^3 r \, \left[(\nabla^2 \psi^*) x \psi - \psi^* x \nabla^2 \psi \right]$$
(8)

Using integration by parts,

$$\nabla \cdot ((\nabla \psi^*) x \psi) = (\nabla^2 \psi^*) x \psi + (\nabla \psi^*) \cdot \nabla (x \psi), \tag{9}$$

the term $\int (\nabla^2 \psi^*) x \psi$ in (8) above is

$$\int d^3r \, (\nabla^2 \psi^*) x \psi = \int d^3r \, \nabla \cdot ((\nabla \psi^*) x \psi) - \int d^3r \, \nabla \psi^* \cdot \nabla (x \psi)$$

$$= -\int d^3r \, \nabla \psi^* \cdot \nabla (x \psi)$$
(10)

Using integration by parts again,

$$\nabla \cdot (\psi^* \nabla (x\psi)) = \nabla \psi^* \cdot \nabla (x\psi) + \psi^* \nabla^2 (x\psi) \tag{11}$$

we have,

$$-\int d^3r \,\nabla \psi^* \cdot \nabla(x\psi) = -\int d^3r \,\nabla \cdot (\psi^* \nabla(x\psi)) + \int d^3r \,\psi^* \nabla^2(x\psi) \quad (12)$$

So we rewrite (8)

$$\frac{\mathrm{d}\langle x\rangle}{\mathrm{d}t} = \frac{\hbar}{2mi} \int \mathrm{d}^3 r \left[\psi^* \nabla^2 (x\psi) - \psi^* x \nabla^2 \psi \right]$$
 (13)

Recall that,

$$\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \tag{14}$$

and w.r.t. the y,z terms, $\nabla^2_{y,z}(x\psi)=x\nabla^2_{y,z}\psi,$ so we need to only keep track of

$$\psi^* \frac{\partial^2(x\psi)}{\partial x^2} - \psi^* x \frac{\partial^2 \psi}{\partial x^2} \tag{15}$$

We have,

$$\frac{\partial^2(x\psi)}{\partial x^2} = \frac{\partial}{\partial x} \left(\psi + x \frac{\partial \psi}{\partial x} \right) = 2 \frac{\partial \psi}{\partial x} + x \frac{\partial^2 \psi}{\partial x^2}$$
 (16)

Therefore equation (13) becomes

$$\frac{\mathrm{d}\langle x \rangle}{\mathrm{d}t} = \frac{\hbar}{2mi} \int \mathrm{d}^3 r \, \psi^* \left[2 \frac{\partial \psi}{\partial x} + x \frac{\partial^2 \psi}{\partial x^2} - x \frac{\partial^2 \psi}{\partial x^2} \right]
= \frac{\hbar}{mi} \int \mathrm{d}^3 r \, \psi^* \frac{\partial \psi}{\partial x}
= \frac{\langle p_x \rangle}{m},$$
(17)

as

$$\langle p_x \rangle = \frac{\hbar}{i} \int d^3 r \, \psi^* \frac{\partial \psi}{\partial x}$$
 (18)

With

$$\langle \boldsymbol{p} \rangle = \frac{\hbar}{i} \int d^3 r \, \psi^* \nabla \psi \tag{19}$$

we generalize this to,

$$\frac{\mathrm{d}\langle \boldsymbol{r} \rangle}{\mathrm{d}t} = \frac{\langle \boldsymbol{p} \rangle}{m} \tag{20}$$

The equation (8)

$$\frac{\mathrm{d}\langle x\rangle}{\mathrm{d}t} = \frac{\hbar}{2mi} \int \mathrm{d}^3 r \left[(\nabla^2 \psi^*) x \psi - \psi^* x \nabla^2 \psi \right]$$
 (21)

can be manipulated using integration by parts on both terms,

$$\nabla \cdot ((\nabla \psi^*) x \psi) = (\nabla^2 \psi^*) x \psi + (\nabla \psi^*) \cdot \nabla (x \psi)$$

$$\nabla \cdot (\psi^* x \nabla \psi) = \psi^* x \nabla^2 \psi + \nabla (\psi^* x) \cdot \nabla \psi$$
(22)

So the integral becomes,

$$\int d^3r \left[(\nabla^2 \psi^*) x \psi - \psi^* x \nabla^2 \psi \right] = \int d^3r \, \nabla \cdot ((\nabla \psi^*) x \psi - \psi^* x \nabla \psi)$$

$$- \int d^3r \, \left((\nabla \psi^*) \cdot \nabla (x \psi) - \nabla (\psi^* x) \cdot \nabla \psi \right)$$
(23)

Using the product rule, one term in the expression $(\nabla \psi^*) \cdot \nabla (x\psi) - \nabla (\psi^*x) \cdot \nabla \psi$ is

$$x\nabla\psi^*\cdot\nabla\psi - \nabla\psi^*\cdot(\nabla\psi)x \equiv 0 \tag{24}$$

the other term being,

$$\psi^* \frac{\partial \psi}{\partial x} - \frac{\partial \psi^*}{\partial x} \psi \tag{25}$$

Referring to equation (5) we recognize that with $\frac{\hbar}{2mi}$ this is j_x and therefore equation (21) becomes

$$\frac{\mathrm{d}\langle x\rangle}{\mathrm{d}t} = \int \mathrm{d}^3 r \, j_x \tag{26}$$

Generalising,

$$\frac{\mathrm{d}\langle \boldsymbol{r}\rangle}{\mathrm{d}t} = \int \mathrm{d}^3 r \, \boldsymbol{j} \tag{27}$$

This result can also be obtained by noting that

$$\langle \boldsymbol{r} \rangle = \int d^{3}r \, \psi^{*} \boldsymbol{r} \psi = \int d^{3}r \, \boldsymbol{r} \psi^{*} \psi = \int d^{3}r \, \boldsymbol{r} \rho$$

$$\Rightarrow \frac{d\langle \boldsymbol{r} \rangle}{dt} = \int d^{3}r \, \boldsymbol{r} \frac{\partial \rho}{\partial t} = -\int d^{3}r \, \boldsymbol{r} \nabla \cdot \boldsymbol{j}$$
(28)

where (3) has been used.

Next we have

$$\frac{\mathrm{d}\langle \boldsymbol{p}\rangle}{\mathrm{d}t} = -i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \int \mathrm{d}^3 r \, \psi^* \nabla \psi \tag{29}$$

Once again, with a particular coordinate direction,

$$\frac{\mathrm{d}\langle p_x \rangle}{\mathrm{d}t} = -i\hbar \int \mathrm{d}^3 r \left[\frac{\partial \psi^*}{\partial t} \frac{\partial \psi}{\partial x} + \psi^* \frac{\partial}{\partial x} \frac{\partial \psi}{\partial t} \right]
= \int \mathrm{d}^3 r \left[(H\psi^*) \frac{\partial \psi}{\partial x} - \psi^* \frac{\partial}{\partial x} H\psi \right]
= \frac{\hbar^2}{2m} \int \mathrm{d}^3 r \left[\psi^* \frac{\partial}{\partial x} \nabla^2 \psi - (\nabla^2 \psi^*) \frac{\partial \psi}{\partial x} \right] + \int \mathrm{d}^3 r \, \psi^* \left(V \frac{\partial \psi}{\partial x} - \frac{\partial}{\partial x} (V\psi) \right)$$
(30)

The first term can be manipulated using Green's theorem,

$$\int d^3r \left(T\nabla^2 U - U\nabla^2 T\right) = \int (T\nabla U - U\nabla T) \cdot d\mathbf{S}$$
(31)

Note that,

$$\frac{\partial}{\partial x} \nabla^2 \psi = \nabla^2 \frac{\partial \psi}{\partial x} \tag{32}$$

and so we identify

$$T = \psi^*; U = \frac{\partial \psi}{\partial x} \tag{33}$$

So we have,

$$\frac{\mathrm{d}\langle p_x \rangle}{\mathrm{d}t} = \int \mathrm{d}^3 r \, \psi^* \left(V \frac{\partial \psi}{\partial x} - \frac{\partial}{\partial x} (V \psi) \right) = -\int \mathrm{d}^3 r \, \psi^* \frac{\partial V}{\partial x} \psi$$

$$= \left\langle -\frac{\partial V}{\partial x} \right\rangle \tag{34}$$

Once again, generalizing,

$$\frac{\mathrm{d}\langle \boldsymbol{p}\rangle}{\mathrm{d}t} = \langle -\nabla V\rangle \tag{35}$$

Combining with equation (20) above,

$$\frac{\mathrm{d}^2 \langle \boldsymbol{r} \rangle}{\mathrm{d}t^2} = \frac{1}{m} \frac{\mathrm{d} \langle \boldsymbol{p} \rangle}{\mathrm{d}t} = \frac{1}{m} \langle -\nabla V \rangle \tag{36}$$

When we have

$$F(r,t) = -\nabla V(r,t) \tag{37}$$

then,

$$\frac{\mathrm{d}^2 \langle \boldsymbol{r} \rangle}{\mathrm{d}t^2} = \frac{1}{m} \frac{\mathrm{d} \langle \boldsymbol{p} \rangle}{\mathrm{d}t} = \frac{\langle \boldsymbol{F} \rangle}{m}$$
 (38)

In particular, if $\langle \boldsymbol{F}(\boldsymbol{r},t) \rangle = \boldsymbol{F}(\langle \boldsymbol{r} \rangle,t)$, then $\langle \boldsymbol{r} \rangle$ behaves like a classical particle.

Operators and commutators

Operators act on functions. In coordinate representation

$$\phi(x) = O\psi(x) \tag{39}$$

Already seen two examples x and p_x ; or more generally r and p, which lead to

$$\phi(\mathbf{r}) = \mathbf{r}\psi(\mathbf{r})$$

$$\phi(\mathbf{r}) = \mathbf{p}\psi(\mathbf{r}) = -i\hbar\nabla\psi(\mathbf{r})$$
(40)

The order in which operators act on a function is important:

$$O_1 O_2 \psi(\mathbf{r}) \neq O_2 O_1 \psi(\mathbf{r}) \tag{41}$$

For example,

$$\frac{\partial}{\partial x}x\psi \neq x\frac{\partial}{\partial x}\psi\tag{42}$$

The commutator of two operators is an operator,

$$[O1, O2] \equiv O_1 O_2 - O_2 O_1 \tag{43}$$

In general for any operator O,

$$i\hbar \frac{\mathrm{d}\langle O \rangle}{\mathrm{d}t} = i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \int \mathrm{d}^3 r \, \psi^* O \psi$$

$$= \int \mathrm{d}^3 r \, (\psi^* O H \psi - (H \psi^*)(O \psi)) + i\hbar \int \mathrm{d}^3 r \, \psi^* \frac{\partial O}{\partial t} \psi$$
(44)

We want to move ψ^* to the left of H, in the term,

$$-(H\psi^*)(O\psi) \to -\psi^* H O\psi \tag{45}$$

Then we have,

$$i\hbar \frac{\mathrm{d}\langle O\rangle}{\mathrm{d}t} = \int \mathrm{d}^3 r \, \psi^* (OH - HO)\psi + i\hbar \left\langle \frac{\partial O}{\partial t} \right\rangle$$
 (46)

This becomes,

$$i\hbar \frac{\mathrm{d}\langle O\rangle}{\mathrm{d}t} = \langle [O, H]\rangle + i\hbar \left\langle \frac{\partial O}{\partial t} \right\rangle$$
 (47)

If [O, H] = 0 and O does not have any explicit time dependence,

$$\frac{\mathrm{d}\langle O\rangle}{\mathrm{d}t} = 0,\tag{48}$$

i.e., O is a conserved quantity or constant of motion.

So how do we move ψ^* to the left of H?

$$-\int d^3r (H\psi^*)(O\psi) = \int d^3r \left(\frac{\hbar^2}{2m}\nabla^2\psi^* - V\psi^*\right)(O\psi)$$
 (49)

Focusing on the $(\nabla^2 \psi^*)(O\psi)$ term, note that we can write this as

$$\int d^3 r \left(O\psi\right) \frac{\hbar^2}{2m} \nabla^2 \psi^* \tag{50}$$

Identifying

$$T = O\psi; U = \psi^* \tag{51}$$

in Green's theorem,

$$\int d^3r \left(T\nabla^2 U - U\nabla^2 T\right) = \int (T\nabla U - U\nabla T) \cdot d\mathbf{S}$$
 (52)

we have

$$\frac{\hbar^2}{2m} \int d^3r \left((O\psi) \nabla^2 \psi^* - \psi^* \nabla^2 (O\psi) \right) = 0$$

$$\Rightarrow \frac{\hbar^2}{2m} \int d^3r \left(O\psi \right) \nabla^2 \psi^* = \frac{\hbar^2}{2m} \int d^3r \, \psi^* \nabla^2 (O\psi)$$
(53)

Using this in (49), we have

$$-\int d^3r (H\psi^*)(O\psi) = \int d^3r \,\psi^* \left(\frac{\hbar^2}{2m}\nabla^2(O\psi) - VO\psi\right) = -\int d^3r \,\psi^* HO\psi$$
(54)

giving equation (46), with the term in brackets, the commutator (47)

Coming back to commutators,

$$[x, p_x] = [y, p_y] = [z, p_z] = i\hbar$$

 $[x, p_y] = 0$ (55)

If A, B, C are operators, we have

$$[A, B] = -[B, A] \tag{56a}$$

$$[AB, C] = A[B, C] + [A, C]B$$
 (56b)

Another identity (cyclic) is

$$[A, [B, C]] + [C, [A, B]] + [B, [C, A]] = 0$$
(57)

To show this, expand the above,

$$A[B,C] - [B,C]A + C[A,B] - [A,B]C + B[C,A] - [C,A]B$$
(58)

Combining terms, one can obtain terms like LHS of equation (56b).

$$A[B,C] - [C,A]B = A[B,C] + [A,C]B = [AB,C]$$

$$-[B,C]A + C[A,B] = [C,B]A + C[A,B] = [CA,B]$$
(59)

We have,

$$[A, [B, C]] + [C, [A, B]] + [B, [C, A]] = [AB, C] + [CA, B] + [BC, A] = 0$$
 (60)

Another useful identity set

$$[A, B^{n}] = nB^{n-1}[A, B]$$

$$[A^{n}, B] = nA^{n-1}[A, B]$$
(61)

provided that [A, [A, B]] = [B, [A, B]] = 0.

For n=2, we have $[A,B^2]=B[A,B]+[A,B]B=2B[A,B]$. So for the induction step, we have to show that

$$[A, B^{n+1}] = (n+1)B^n[A, B]$$
(62)

assuming $[A, B^n] = nB^{n-1}[A, B]$ holds. The above follows because,

$$[A, B^{n+1}] = [A, B \cdot B^n] = B[A, B^n] + [A, B]B^n$$

= $B(nB^{n-1}[A, B]) + B^n[A, B]$ (63)

Here is an example that applies the above result: Let

$$f(x) = \sum_{n=0}^{\infty} a_n x^n \tag{64}$$

be an operator that has a power series expansion in the coordinate operator x. What is the commutator, $[p_x, f(x)]$? Note that we already know the result for $[p_x, x] = -[x, p_x] = -i\hbar$ (equation (55)). We have,

$$[p_x, f(x)] = [p_x, \sum a_n x^n] = \sum a_n [p_x, x^n]$$
 (65)

With the above identity (61), we obtain

$$[p_x, f(x)] = \sum a_n n x^{n-1} [p_x, x] = -i\hbar \sum a_n n x^{n-1} = -i\hbar \frac{\mathrm{d}f}{\mathrm{d}x}$$
 (66)

Note that

$$[x, [p_x, x]] = 0$$
 (67)

as required.

Therefore the action of the operator $[p_x, f(x)]$ on a function $\psi(x)$ is,

$$[p_x, f(x)]\psi(x) = -i\hbar \frac{\mathrm{d}f}{\mathrm{d}x}\psi(x) \tag{68}$$

and this is a multiplicative operator in coordinate space.

End of Podcast Episode 2.