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Heisenberg’s uncertainty principle

A x Ap, > 1)
Some notation:
(Az)* = Var(z) = ((z — (2))*)
(Ap,)* = Var(ps) = (P — (p2)))
We define two new operators «, 3 as,

a=x—(x)

6= (o) =i (5 - () 3)

The variances are calculated as,
(80 = (@) = [ dev(@)au(o)
B = (%) = [ dov @5

From the definition,
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Cauchy-Schwarz inequality

n 2 n n
doabi| < lar D (bl (6)
k=1 k=1 k=1

For real vectors, ay, by, are real, so by = b, and absolute value sign is also
redundant. The norm of a is,

n 1/2
lall = (Z Iak|2> (7)

k=1

The equality sign in (6) holds iff by = Aag. In the case of functions in a
Hilbert space, this generalizes to

’/dxf*(x)g(w) 2 < /dmlf(w)IQ/dx’ lg(=")[* (8)

171 = ([ as umﬁ)m )

and the equality sign holds analogously iff

g=Af (10)

The norm of f is

Here is how to derive this inequality,

[dyfo|© Jdyfa\ (. A [y
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(

J dzlg|?
Expanding the product of the terms in brackets,

0< /dx‘f|2 _ Jdyfet [dy'frg
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Deriving the uncertainty principle
Start with the product (Ax)? x (Ap,)? which using equation (4), is

@) x () = [ @etv) [dv@pee) )

Identifying f = aw and since Cauchy-Schwarz inequality has the term,
[1fI? = [ f*f, the first integral can be written as,

/ da ¢ (2)aP(x) = / 4 o (z) anp(z) (14)

Note that o = o* and it is multiplicative. The integral involving  is more
involved (here we identify, g = $1). We start with,

[ swsn) = [ - o) [avse )
Recall equation (5),
[ axr v = () =0 (16)
and therefore,
[ swsw) = [ pwe) =—in [ar Swsn =0 an
So we have,
0= [ da'pa(wd0) = [ @ palviu+ [ davna(30)
= [arvnion = [ s (18)
= [arvso—- [ o= [ar @es

Continuing with f = aw, g = v, we have now using the Cauchy-Schwarz
inequality,
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as the integral on the RHS

[asawse = [devrapy

Now we know that

12> = (Re(2))? + (Im(z))? where

Re(z) = : —;Z
z—2z"
Im(z) = %

Consider,

z = /dx Y*a By so that,
Re(z) _ 447 (W 0y +vas)

2
_ Jdn(@raBy — papy)

Im(z)

Now the second piece (using equation (5))

[awvasrsr == [ar(@ur)ua

As before (equations (17) and (18)),

(20)

(21)

(23)

0= [ swan) = [ @' pwan) = [ @ paav+ [ v

= —/d:c’ (B )y = /dﬁ/w*ﬁ(aw)

With this,

Re(z)
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In the Im(z) the commutator [« ] shows up! Working this out,
[&,6] = (l’ - <I’>)(p$ - <px>) - (pm - <p1,>)(l' - <$>) = [m7pac] =ih

; 26
élm(z):;—?/dxl/}*wzi—; (26)

The RHS of equation (19) is,

[ v = o= L ed s S
which —
(Ba)? x (Apy)2 > 2 L AreH@7 T oo o
= (B x (a2
Taking positive square roots leads to,
Az x Ap, > g (28)

which is the famous uncertainty principle.

Minimum uncertainty wave packet

Note that for equality, i.e.,

Az X Ap, = g (29)

two conditions must hold, the condition in equation (10),

f = Ag,where X is a complex constant; (30a)
and from equation (27) / dz ¢*(aB + Ba) =0 (30b)
Working with the first condition,
o = A = patp — (pa)p = = _A<x> (31)
= 8 e @t + 2y



The solution to this ODE is,

g i(ps)
— Nexp ([ —— (2 — (a))? 4+ 222! 32
ola) = Nowp (o - (o7 + ) (32)
N is determined using the normalization [ [¢)|*> = 1. The second condition,
equation (30b), is from equation (25), Re(z) = 0, so that z is pure imaginary,
ie.,

z= /dxw*aﬁw = %/dxw*oﬁw (33)

is pure imaginary, where in the second equality, ar) = MG is used. This
means that A is pure imaginary, i.e. A = ix where & is real. With this

(x) = Nexp <(:v ;/j;?) + 2<z;;>x> (34)
Note that " a0
(pz) = ;/dw*a (35)

is real. How do we know this?
From Ehrenfest’s theorem we have,

) _dw)

m dt
Another way is to look at this in momentum space (see equation (24) on
page 4, from episode one)

(36)

(p) = / &pp o) (37)

There is yet another way, which involves the fact that p is a Hermitian op-
erator.

With this we have,

(l‘ — <I>)2 . Z<px> .Z') (38)

Vi) = N exp ( 2k n

so that, for the normalization condition

1= [ arp@P = [ dov@ete) = VP [ doexp (%)
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For this integral to converge, we require, k < 0, so that Kk = —|k| and the

integral becomes,
& x — (x))?
\N|2/ dz exp (—%) =1 (40)

/ dz exp(—az?®) = \/E, for a > 0 (41)
o a

IN|*\/7|k|h =1 (42)

Now,

so that

To determine |k| we can use

(Ar)? = (a?) = / da ¢ (2)atp(z) = / do(z— @PE@P  (43)

It is also possible to use (3?). The above is,

N[ oo e (—%) — Ay (ad)

Using the integral,

o 1
/_oo dx 2% exp(—az?) = 5 % (45)
the above is NP
VB e = (A2 (46)

Together with equation (42) we have

VL iy = (A

(47)
IN|*\/7|k|h =1
so dividing the two,
hlk| = 2(Ax)? (48)
leading to,
1
N raa) 7 )
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With all this,

U@ @P i),
YO = A P ( By h )

(50)

Time evolution of this wave packet ¥ (x) can be calculated by solving the
time dependent Schrodinger equation

OY(z,t)

‘ =H
with (z,ty) = ¥ ()
Typically, ty = 0. The Hamiltonian H is,
h? d2

For a free particle, V' = 0, and it is particularly simple to evaluate the time
evolution.

End of Podcast Episode 3.



